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Abstract

The Damour-Ruffini method is used to investigate the
purely thermal spectrum in a dragging coordinate system,
as well as the Hawking radiation properties of a stationary
axi-symmetry Kerr-New man black hole. The self-
gravitational interaction, as well as energy conservation,
have been considered. The results show that the tunneling
rates at the event and outer horizon are related to the
change in Bekenste in-Hawking entropy, that the actual
radiation spectrum is not strictly pure thermal, and that
non-thermal Hawking radiation can carry information from
the black hole because the derivation follows conservation
laws. As a result, the black hole information paradox can be
explained, and the process is unitary. Thus, an exact
correction to the Hawking thermal spectrum is present.
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Introduction

Hawking established theoretically in 1975 that black holes can
emit thermal radiation and that the temperature associated
with it is correct. The thermal radiation of a black hole has
become a hot topic in theoretical physics in recent years [1,2].
Many useful methods, like the tunneling approach, the Hamilton
Jacobi method, and the gravitational anomaly method, attempt
to explain the dynamical genesis of black hole thermal radiation.
Following that, with black hole evaporation, there is a paradox
of information loss, which means that the pure quantum state
will be disintegrated into the mixture. In Quantum Field Theory,
the ingoing state is the pure state, but the outgoing state is the
mixture, so the underlying unitary theory is violated. In addition,
Hawking believed that the black hole's thermal radiation is due
to the quantum tunneling effect, which is triggered by a vacuum
caution near the event horizon, causinga pair of particles to form
just inside the horizon, with the positive energy particle
tunneling out and the negative anti-particle being absorbed by
the black hole. In other words, we can consider that the
particles created just outside the horizon, the negative energy
anti-particle is tunneled into the horizon because the negative
energy orbit only exists within the horizon, and the positive

energy particle is left outside the horizon and moves towards
the infinite distance, forming the Hawking thermal spectrum.
Because both narrative forms involve tunneling, the tunneling
barrier must be identified to accurately depict the tunneling
process and obtain the correct radiation spectrum. In 1976 [3],
Damour and Runiused relativity rather than the second
quantilization. To validate the Hawking radiation from black
holes, Quantum Mechanics in Curved Space-Time was used.
They argued that a massive charged particle may tunnel out over
the horizon using a wave function, resulting in the formation of
a pair: one particle would move out, while the other would fall
back towards the singularity. They were able to obtain the
spectrum of Hawking radiation in this manner.

Kraus and Wilczek [4] developed a semi-classical method to
describe Hawking radiation as a tunnelling process in which a
particle moves in dynamic geometry, and Parikh and Wilczek [5]
and Vagenas [6] carried out research on the tunneling radiation
characteristics of static spherically symmetric Schwarzchild black
hole and Reissner-Nordstr om black hole. The results show that,
when energy conservation and the un_xed space-time
background are taken into account, the resultant radiation
spectrum is not strictly thermal, which is a correct modification
to the Hawking radiation spectrum. The method overcomes
Hawking radiation flaws, pointing out that self-gravitation
among particles provides the tunneling barrier. Finding a well-
behaved coordinate system near the event horizon to determine
the emission rate is a fundamental insight. Tunneling not only
provides a valuable technique for verifying black hole
thermodynamic parameters, but it also provides an alternative
conceptual means of comprehending the underlying physical
process of black hole radiation. Hawking radiation from Anti-de
Sitter black holes was researched by Hemming and Keski-Vakkuri
(2001), and Medved [7] explored those from a de Sitter cosmic
horizon. It has been successfully applied to a large variety of
exotic space-times [8-13], demonstrating its robustness.
However, determining the imaginary part of the action for the
exiting particle is a difficult task. However, they are all limited to
spherically symmetric black holes. The Hawking radiation from a
static spherically symmetric black hole was calculated using the
Damour-Runi method and factoring the self-gravitation
interaction and energy conservation [14]. Their findings reveal
that the radiation isn't precisely thermal, and that this non-
thermal Hawking radiation can transport data from the black
hole. This can be used to explain the black hole information
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paradox, and the process also meets unitary requirements. Han
and Hao investigated the Kerr black hole's non-thermal Hawking
radiation [15]. We seek to extend this method to the stationary
axi-symmetry Kerr-Newman black hole in this study, obtaining
the Hawking spectrum in a dragging coordinate system as well
as tunneling rates at the event and cosmological horizon. The
corrected non-thermal Hawking radiation of the stationary axi-
symmetry black hole is calculated using a new method that is
more precise and general. In Section 2, we look at the Damour-
Runi approach for calculating the accurate thermal spectrum in
a dragging coordinate system. In Section 3, we examine
analytical continuations and the self-gravitation interaction to
look into the black hole's tunneling radiation properties. Section
4 ends with a discussion and a conclusion.

Review of the Damour-Ruffini Method

We consider the Kerr-Newman metric of the form
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Here M denotes the black hole's total mass, a denotes the
black hole's angular momentum per unit mass, and Q denotes
the black hole's charge. The event horizon's surface gravity is
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At the radius of the event horizon, the metric (1) has a
coordinate singularity. To apply Damour-Ruffini's work to Kerr
space-time, we must _rst identify a coordinate system that will
perform well at the event horizon and whose coordinate clock
synchronization can be transmitted from one location to
another.

First, we examine the dragging coordinate system. Let

9__8s_g
a g, @)

The space-time metric for the Kerr-Newman black hole can be
expressed as
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In four-dimensional Kerr-Newman space-time, the line
element (5) represents a three-dimensional hyper-surface. Using
the Damour-Ru_ni approach, we may obtain the Hawking
radiation's pure thermal spectrum. This means that in the
dragging coordinate system, we may also consider non-thermal
Hawking radiation, where
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The Klein-Gordon equation in curved space-time is to
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With equation (5), the Klein-Gordon equation can be reduced

udR(l) \/l—ar(\/_ 11 d;l) R((;))G(l 0= [m0+(a)+mg03) & ]R()
833 @)
where
2 we 2 dw(ﬂ)
Giro)=g 4 (f
ag f &6 de ©)

and ¢,the wave function has been separated as
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Introducing the Tortoise coordinates
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In the vicinity of the event horizon, i.e., w_hggwr *Jﬂ, we could find that
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Thus, we can write equation (12) near the event horizon, in
the standard wave equation as:
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where 6007]9“““, r.*a  and @ iy which being the dragging

angular velocity at the event horizon and Vo is the static electro potential of the horizon
where 6 is equal to 0 or m.By solving equation (14) we get the radial wave functions as
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From R(t.r)=¢"R@) , we obtain the ingoing-wave and outgoing-wave solutions
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where @ is the advanced Eddington-Finkelstein coordinates.

The Self-Gravitation Interaction and
Analytical Continuations

Near the event horizon, Ry can be written as
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The Rout has a logarithmic singularity and it is not analytic on
the event horizon r+. By analytical continuation rotating -m
through the lower-half complex r-plane, we have
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Then near the event horizon r,, Ry,; can be rewritten as
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The scattering probability of the outgoing wave at the event
horizon is
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can now assume that the emitting particles have a space-

time back-reaction. When a particle with energy w;, charge g,
and angular momentum ji emerges from a black hole, M
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For many particles, assuming that they radiate one by one, we
have
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If the emission is regarded as a continuous process, the sum in (24) should be
substituted by an integration. The emission probability will be
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We

don't have to do the integration directly to make the

calculation easier. Instead, we take the following approach:
making use of the entropy S of the black hole, satisfying the first
law of thermodynamics, we have
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Where A is the area of the black hole horizon, and we can
easily obtain that
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Where AS is the entropy change of the black hole between
before and after the emission. Then we have
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Comparing eq. (26) with eq. (29), we find that the integration
in Eq. (26) satis_es the total differential condition. So Eq. (26)
can be calculated out as following:
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The underlying unitary theory is clearly present in this
conclusion. In reality, quantum theory demonstrates that the
outgoing-wave transmission can be written as

L(i—>f)= lm

af (32)

Where aif is the amplitude for the tunnelling action, and

is a phase factor with ni and nf being the sum of
the number of beginning and end states, respectively. The phase
factor is calculated by adding all final states together and
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averaging all initial states. The number of _nal states, on the
other hand, is simply expressed in exponential form by the final
states entropy, whereas the number of initial states is expressed
in exponential form by the initial states entropy. We obtain
which is in agreement with our result Eq. (31). Is as same as Eq.
(33).

S
r =8_h =exp(AS),
€ (33)
Conclusion

In this study, we show that taking into consideration the self-
gravitational interaction of the radiant particle energy with the
space-time background, the permeation ratio of the outgoing
wave revises the thermal radiation spectrum from the Kerr-
Newman black hole. This deduced result is in contrast to the
earlier tunnelling-based study of the same subject, and it
satis_es the unitary. However, we utilize a different approach
that is more straightforward, direct, and tactile in nature.
Furthermore, the computation is straightforward, and we don't
need to worry about whether a radiant particle has a rest mass.
When considering the self-gravitational interaction, it is clear
that the outgoing-wave transmission ratio in the event area
appears to depart from the black hole's thermal radiation
spectrum, which may carry related information about the
material that makes up the black hole. This finding could lead to
a solution to the problem of information loss. In fact, if we use
the Damour-Rffini method to calculate the Hawking radiation of
the Kerr-Newman black hole without taking into account the
self-gravitational interaction of the radiation energy with the
time-space background, we get a precise radiation spectrum of
the tunnelling process through the event area. In Eq. (12), the
outgoing wave possesses a potential barrier between the event
area and infinite distance. As a result, the black hole radiation
spectrum, dispersed by the shape, appears gray to an observer
staring at the event area from an infinite distance.
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