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Quasi-Mono-Energetic Electron Beams
from a Laser—Driven Argon Clustered
Gas Target for Radiation Medicine

Abstract

Purpose: To propose a promising alternative for conventional accelerators for
high energy electron radiation therapy by generating quasi-mono-energetic
electron beams.

Methods: Electron beams with energy up to hundred MeV, 1.8% energy spread,
125 pC charges and a few m_ divergences have been achieved from a 3-mm-
long clustered gas plasma, driven by laser pulse with peak power up to 100 TW.
Optimization of experimental parameters, such as laser contrast and laser-plasma
interaction timing leads to stable laser propagation and high-quality electron
beams.

Results: Clustered gas, in addition to the self-focusing effect, owns two important
features: local solid electron density and efficient absorption of ultra-short laser
pulses. Therefore, high ionization levels and high electron densities could generate
high-charge energetic electron beams. Our experiment has verified that clusters
in the gas jet influence the laser propagation and Wakefield evolution, producing
stable laser guiding and good quality electron beams.

Conclusion: The results demonstrated that the laser-driven clustered gas target
provides a unique method for electron injection and has great potential in
generating mono-energetic collimated electron beams with large beam charge.
Stable and reproducible mono-energetic electron beams with sufficient electron
intensities are required in medical applications, e.g., radiotherapy. Many
engineering issues remain to be solved before clinical application, but laser-
accelerated electron beams present a promising scheme for future radiation
therapy.
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Introduction

Cluster, held together by Van-der-Walls forces, is a topic
of recent interest [1-4]. When supersonic gas expands into
vacuum, a multi-cluster structure is formed in a low density gas
background. Compared with gas and solids, clusters appear as
a novel state of matter on the nanometer scale. Owing to the
great development of the chirped pulse amplification technique
(CPA), the interaction of intense, ultra short laser pulses with
atomic and molecular clusters [4] is an active area of research. It
includes several promising applications, such as table-top plasma
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waveguides [5-7] relativistic particle accelerators [8-12] and
X-ray sources [13,14].

Clustered gas targets, in addition to the properties of both solid
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target (high local density, efficient energy absorption) and gas
target (extended laser-plasma interaction length), owns their
specific optical properties [15,16]. After irradiated by a high-
power laser pulse, the breakdown of a cluster is initiated by
optical field ionization (OFI). OFI produces the first generation of
free electrons, which leads to efficient collisional ionization under
local solid density. During this phase, clusters cause concave-
shaped refractive index profile on the laser beam cross-section,
which induces self-focusing. The use of atomic clusters presents
a new scheme for efficient self-guided laser pulse propagation,
in addition to relativistic self-focusing and preformed plasma
waveguides.

Laser Wakefield acceleration (LWFA) [17] is foreseen as a
promising scheme for the compact next generation electron
accelerators. Such table-top accelerators with acceleration
gradients larger than 100 GeV/m, have a great potential to
replace traditional high-energy accelerators. During the last
decade, experimental LWFA research has brought significant
progresses in the enhancement of the electron beam quality,
stability, controllability, and maximum electron energy [18-22].
For relativistic laser intensities, higher than 10® W/cm?, electrons
can be completely expelled out of the focused laser volume and
self-trapped in the accelerating fields associated with the plasma
wave [23].

However, the self-injection regime via transverse wave-breaking
is not optimal for generating quality electron beam. It requires
high laser intensity a0~4 wherea, =e4,,, / mc’) and high plasma
density (ne~10'® cm3), which limits the electron energy gain

13

Egm(GeV)zlﬂ(P/lOOTW) (ne/10180m73)72/3. Very recent

results have shown the generation of electron beams up to 4.2
GeVfrom 0.3 PW laser pulses driving 9-cm-long capillary discharge
waveguide at sub-10%® cm density [24]. On the other hand,
ionization-induced electron injection [25-28], has been realized
in pure nitrogen and mixed gases to produce electron bunches
with maximum acceleration length close to the dephasing
length. This novel mechanism, which utilizes the large difference
in ionization potentials between successive ionization states
of atoms, could inject electrons into low-density laser-driven
Wakefield. Nevertheless, to achieve efficient plasma channel
for LWFA in a terawatt (TW) femtosecond (fs) laser, the plasma

density should be above 10 cm™. At this density, the electron

dephasing length 7 = ,1p3 /2 (4 isthe plasma wavelength and
14

A, is the laser wavelength) is about 1 cm and the electrons could

gain a maximum energy of about 1 GeV [20] within 1-cm-long

plasma channel. Efficient plasma channel guides the laser pulse

to increase acceleration length up to the dephasing length Ld,

above which the accelerated electrons outrun the plasma wave
and slip into deceleration.

As we all know, most of the laser plasma electron accelerators
have been realized with gas targets. However, clustered gas,
in addition to the self-focusing effect mentioned before, owns
two important features: local solid electron density and efficient
absorption of ultra-short laser pulses [28]. Therefore, high
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ionization levels and high electron densities could generate
high-charge energetic electron beams. Meanwhile, clusters
also influence the Wakefield evolution and provide a source
of injected electrons due to ionization by the laser field or
the electron collision. It has been reported that high-charge
relativistic electron beams were produced as the electrons
repelled from the clusters were injected and accelerated by
direct laser acceleration (DLA) [9,14,29].

For over 50 years, electron beams has been widely used in
radiation therapy [30]. Conventional radiotherapy utilizes
S-band linear accelerators to produce mono-energetic beams
with energies of 5-20 MeV, which are used to treat skin and
superficial disease [31]. However, such low-energy electrons
are not qualified for deep-seated tumors. Several investigations
have shown that a laser-driven electron accelerators have a great
potential in direct electron and X-ray therapies [32,33]. Stable
and reproducible mono-energetic electron beams with sufficient
electron intensities are required in future medical applications.

In this letter, we present the generation of quasi-mono-energetic
collimated (~7 mrad) electron beams generated from a clustered
gas target for the first time. In our experiment, electron beams
up to 210 MeV were generated by focusing a 100 TW laser pulse
upon an Ar supersonic cluster-gas nozzle. Also, we demonstrated
the self-focusing effect in clustered gas, causing laser-cluster
interactions at high intensities.

Methods

Our schematic experimental set-up is shown in Figure 1.

The experiment was performed using a Ti: Sapphire laser system
at the Key Laboratory of Laser Plasmas of Shanghai Jiao Tong
University. Currently, the laser system delivers laser pulses of 30
fs in duration with a peak power of up to 100 TW. The laser beam
was focused in vacuum by using F/20 off-axis parabolic mirror
(OAP). The laser focal spot size was 30 um in the full width at
the half maximum (FWHM). Given the above laser parameters,
the maximum laser intensity, and the corresponding normalized
vector potential),

a, = \/lz (um)1, (1018Wcm’2)

where 7.0 x 10'® W/cm-18 and 1.9, respectively. The focal point
was placed above the center of a cylindrical gas jet nozzle [34]
with a 3-mm diameter. The nozzle generates a supersonic
Argon (99.99% purity) gas flow with a Mach number of 4.8. The
gas density was controlled by varying the gas-jet stagnation
pressure from 0 to 5 MPa. According to Hagena’s scaling law,
[1] our experiment were conducted in a slightly lower clustering
level, with small cluster size and low distribution density. For
example, at 3 MPa backing pressure where the quasi-mono-
energetic electron beams were observed, the average cluster-gas
jet density is estimated to be 3 x 10* cm?3 [1,11,34]. The laser-
plasma interaction was observed through a top-view imaging of
the scattering laser light with the help of a band-pass filter. We
used a 0.98 T, 16 cm long permanent dipole magnet, imaging
plates (Fuji BAS-SR) and DRZ (Mitsubishi Chemical (Gd202S: Tbh)
to measure the accelerated electron beam spatial profile and
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Figure 1 Schematic diagram of the experimental set-up. Inset (a)
shows the optimized vacuum focal spot. The unprocessed
data of electron beam energy spectrum are shown in

K inset (b). J

energy spectrum. The magnet field disperses the electrons in the
horizontal plane, which is parallel to the laser polarization. Two
imaging plates wrapped by 15-um-thick Al foil were placed right
at the exits of the dipole magnet along and perpendicular to the
laser propagation direction. IPHE detected undeflected betatron
X-rays and energy-dispersed electrons over 100 MeV, while the
low energy (LE) electrons (<100 MeV) were recorded on IPLE.
Electrons below 50 MeV were deflected and hit the beam dump.
The electron beam energy spectrum on the DRZ was measured
using an intensified charge-coupled-device (ICCD) camera.

In experiment, we adjusted the experimental parameters, such
as gas background pressure and time delay between the laser
pulse and gas jet nozzle, to optimize electron beam quality.
As clusters are formed by condensation of atoms in vacuum,
when heated by laser pre-pulse, they would eventually expand
and merge to form locally uniform plasma in 10-100 ps [5].
Therefore, the gas jet nozzle must be triggered at the right time
before interaction; otherwise clusters would be unformed or
destroyed at arrival of laser pulse, leading to accordingly poor
plasma channels and no effective signals of electron beams. This
experimental phenomenon suggests that most of the injected
electrons originate from clusters. Our records show that the best
guiding results, as illustrated in Figure 2, were achieved when the
gas jet nozzle were triggered 7.8 ms before arrival of laser pulse
at the background pressure of 3 MPa.

Figure 2a shows a 3-mm-long laser plasma channel achieved
through the self-guiding of the laser pulse, which were observed
in almost all the shots along with collimated electron beams.
We also observed the laser pulse’s periodically focusing and
defocusing during the propagation. Figure 2b shows the spatial
profile of a collimated electron beam observed under the optimal
parameters. The horizontal and vertical divergences are 6.4 m
and 9.1 m__ (FWHM), respectively.

d

Normally in LWFA, if the laser power exceeds the critical power
for relativistic self-focusing (here w0 is the laser frequency
and wp is the plasma frequency), a long interaction channel or
filamentary channels extending to several Rayleigh lengths is
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expected [20]. For comparison, no effective plasma channel (< 0.5
mm) or electron beam was observed with pure helium target at
the same parameters, meaning no self-guided laser propagation
and self-injection occurred. The results support the fact that
clusters induce intense laser pulse self-focusing and provide a
novel scheme for electron acceleration.

Results

Figure 3 presents electron energy spectra obtained from imaging
plates for 3 shots, which were achieved at different laser energy.
Three columns present (from left to right) electron energy
spectra (<100 MeV) recorded on IPLE, electron energy spectra
(>100 MeV) recorded on IPHE and corresponding original energy
spectra around high energy peak. Relevant information for these
shots is given in Table 1. The corresponding laser contrast is
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Figure 2 Plasma channel and e-beam spatial profile. (a) Top-view
image of a laser-plasma channel. The red dashed line
shows the outline of the gas jet nozzle. (b) The transverse
spatial profile of a collimated electron beam generated
from the clustered gas target (without the permanent
dipole magnet). The red (blue) curve is the horizontal
(vertical) lineout. Y,
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Figure 3 Energy spectra of typical quasi-mono-energetic electron
beams for 3 shots at the same background pressure.
The horizontal axis is the dispersive direction so that the
abscissa gives information about the e-beam energy. The
nondispersive direction represents the divergence of
the beam. First column: electron energy spectra (< 100
MeV) recorded on IPLE; Second column: electron energy
spectra (> 100 MeV) recorded on IPHE. Third column:
corresponding integrated energy spectra around high-
energy peak. Laser contrast increases successively (10,
K 107 and 10®) from Figures 3a to 3c. j
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increasing successively from 10 to 10® By using high contrast
laser, the damage of clusters can be avoided. Figure 3a shows a
typical broad energy spectrum, with peak energy ~135 MeV and
total charge ~450 pC. The poor-quality beam energy spread is
commonly achieved by using low laser contrast. And the beam
quality increases as the laser contrast. Figure 3b shows the
improvement in beam quality, yielding a quasi-mono-energetic
e-beam of energy peak ~210 MeV, energy spread ~32% and total
charge ~315 pC. Meanwhile, the high-energy front indicates
electrons with energies over 300 MeV. Further optimizing laser
contrast will improve a lot of the beam quality. Figure 3c shows a
guasi- mono-energetic electron beam with energy spread ~1.8%,
164 MeV electron energy peak, and total charge ~125 pC. The
calculated energy spread in Table 1 is absolute energy spread
after unfolding the contribution to the peak width due to the
horizontal divergence of the electrons in the energy dispersion
plane, assumed equal to the vertical divergence of the e-beam.

Our experimental results could be explained by a combination of
the ionization induced injection and beam loading [35]. There is
a large ionization potential difference between L-shell electrons
(425 eV and 481 eV for Ar9+ and Ar10+, respectively, requiring IL
~10*® W/cm™ to ionize) and M-shell electrons (144 eV for Ar8+,
requiring IL ~4 x 10'® W/cm to ionize). Therefore, the M-shell
electrons of Ar gas are pre-ionized by the leading front of the laser
pulse and form the electron sheath of the Wakefield bubble, while
the inner shell electrons are collisionally ionized out of Ar clusters
by the peak of the laser pulse, as well as optical-field-ionization
of the gas atom. Cluster electrons oscillate back and forth by
the combined effects of the laser field and the electrostatic field
produced by the laser-driven charge separation [8,13]. Due to
the efficient absorption of the laser pulse, the energetic electrons
finally escape from the clusters [28] with enough initial energy
to move at the phase velocity of the wake, they will be easily
trapped and accelerated by the longitudinal electric field.

As more and more electrons are ionized out of clusters and
injected into the Wakefield, which depletes the longitudinal
accelerating field, the injection finally ceases because electrons
do not gain enough energy to be trapped in the Wakefield. This
phenomenon, known as beam loading [36], limits the total charge
of the electron bunch, and results in low energy spread in our
experiment. For plasma wakes in the blowout regime, significant
beam loading will occur when the loaded charge Q (nC) > (where is
the electric field caused by the injected electrons, kp-1 is the plasma
skin depth, and Rb is the blowout radius of the wake) [35].

Table 1 Laser parameters and characteristics of e-beams shown in Figure
3. Epeak is the energy peak in the energy spectra. Third column is the
absolute energy spread after unfolding. Fourth column gives the vertical
divergence of the electron beams. Total charge (over 50 MeV) is given in

the fifth column. Laser contrast increases successively from a to c.

- Charge E
Shot 5 () %iner Ohwrce T B
(pC) ()
135 51 9.3 450 2.3
210 32 7.4 315 3.0
[¢ 164 1.8 6.9 125 2.6
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The total loaded charge can be estimated by, considering the
matched condition [37]. However, the formula didn’t hold well for
our case, since the laser-plasma parameters and are unmatched.
When the laser contrast is high, the clusters don’t suffer from
the pre-pulse and guarantee direct interaction between main
laser pulse and clusters. The laser-cluster interaction occurs at
near solid density, providing a source of tremendous injected
electrons. So, under the radiation of intense laser pulse, a large
amount of electrons will be ionized out of the clusters and
injected into the Wakefield [8,13]. Compared with a laser driven
nitrogen gas target (typical ionization-induced electron injection
regime), the injection process in this case happens much faster
because of the high ionization levels and high electron densities.
Hence the electron beam loads the wake immediately, i.e., the
injected electrons cancel out the longitudinal accelerating field
and end the injection.

Therefore, the extremely fast injection process limited by
beam loading effect should be responsible for the quasi-mono-
energetic electron beam in Figure 3c with an energy spread of
only 1.8%. Meanwhile, as we decrease the laser contrast, the
laser pulse guiding becomes less efficient, leading to poor plasma
channels as observed. Clusters were pre-ionized by the pre-pulse
before arrival of main laser pulse and increased the surrounding
plasma density. It's been proven that the total loaded charge Q
is proportional to plasma density np [37,38]. Accordingly, the
injection process is extended relatively, thus generating e-beams
of high charge and large energy spread as shown in Figures 3a
and 3b. Note that in Figure 3a, the total charge (over 50 MeV) is
up to 450 pC in spite of the broad energy spectra.

Conclusion

In conclusion, the experiments have demonstrated that quasi-
mono-energetic electron beams with 1.8% energy spread, peak
energy ~164 MeV and high beam charge (> 50 MeV) ~125 pC can
be realized using Argon clustered gas jet driven by 100 TW lasers.
Optimization of experimental parameters, such as laser contrast
and gas jet nozzle timing leads to stable laser propagation and
high-quality electron beams. We found that clusters in the gas
jet influence the laser propagation and Wakefield evolution,
producing stable laser guiding and good quality electron beams.
Our results indicate that the laser-driven clustered gas target
provides a unique method for electron injection and has great
potential in generating mono-energetic electron beams with
high beam charge. Mono-energetic e-beams with stable and
reproducible properties with sufficient electron intensities are
achieved, which presents a promising scheme for future radiation
therapy.
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