The FPU Recurrence Model of the Protein Synthesis

The paper suggests a theoretical model of the physical mechanism of recognizing and joining of the transport RNA molecules with the information RNA molecules on the basis of the Fermi-Pasta-Ulam (FPU) recurrence and the group resonance phenomena. Both were experimentally observed in plasma dynamics. The suggested mathematical model represents two coupled nonlinear Shrodinger equations for the description of interaction between the FPU recurrence electric fields in the chains of the tRNA and iRNA molecules. The results of numerical study of the model of dynamics of the tRNA and iRNA molecules in the intracellular solution allow making a conclusion that in a cell there exists a physical mechanism of recognizing, attracting and repelling between the tRNA and iRNA molecules, providing the synthesis of protein. This mechanism is based on the FPU recurrence, whose spectrum structure gives a pattern – matrix for building a protein. Such resonant dynamics is generally characteristic for the dynamics of interaction between the FPU recurrences, in particular the elementary FPU recurrence of the tRNA molecule electrical field and full FPU recurrence of the iRNA molecule electrical field. Moreover, the suggested physical mechanism allows offering a method of external influence on a cell aiming at acceleration of the protein synthesis in it by the applying electromagnetic fields in a form of the FPU recurrence spectrum.


Andrey Berezin

Abstract | PDF

Share this  Facebook  Twitter  LinkedIn  Google+
Flyer image

Abstracted/Indexed in

  • Google Scholar