This research aims to study gamma radiography feasibility in mammography through simulation. GATE simulation package was used to define the feasibility limits and to test several parameters including energy range, activity, source size and dose. An ACR-like mammography phantom was generated in simulation and the produced images were used for visual and analytical assessments. Some images were processed and enhanced by an application developed using the Visualization Toolkit. A special technique was developed to correct the gamma radiation field inhomogeneity and a morphological operator based technique was used to automatically extract regions of interest from the simulated images to estimate the contrast and signal-to-noise ratio. The results of the analytical and visual assessments demonstrated that gamma radiation of 35 keV energy or less produces acceptable mammography images. Higher energy photons produced mammography images but did not pass the rigorous clinical acceptable tests. The maximum feasible cylindrical source size was found to be 4 mm in diameter and 5 mm in thickness. An Am-241 source showed to produce acceptable mammography images in simulation using energy sensitive detectors with an average glandular dose of 1.2 mGy.
Eslam M. Taha, Abdalmajeid M. Alyassin
Journal of Medical Physics and Applied Sciences received 194 citations as per google scholar report